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Abstract We consider quantum Hamiltonians of the form H(t) = H + V (t) where the
spectrum of H is semibounded and discrete, and the eigenvalues behave as En ∼ nα ,
with 0 < α < 1. In particular, the gaps between successive eigenvalues decay as nα−1.
V (t) is supposed to be periodic, bounded, continuously differentiable in the strong sense
and such that the matrix entries with respect to the spectral decomposition of H obey
the estimate ‖V (t)m,n‖ ≤ ε|m − n|−p max{m,n}−2γ for m �= n, where ε > 0, p ≥ 1 and
γ = (1 − α)/2. We show that the energy diffusion exponent can be arbitrarily small pro-
vided p is sufficiently large and ε is small enough. More precisely, for any initial condi-
tion � ∈ Dom(H 1/2), the diffusion of energy is bounded from above as 〈H 〉�(t) = O(tσ ),
where σ = α/(2
p − 1�γ − 1

2 ). As an application we consider the Hamiltonian H(t) =
|p|α + εv(θ, t) on L2(S1,dθ) which was discussed earlier in the literature by Howland.

Keywords Energy growth · Periodically driven quantum system

1 Introduction

One of the basic questions one can ask about time-dependent quantum systems is the growth
of energy on a long time scale for a given initial condition. Unfortunately the quantum dy-
namics in the time-dependent case proved itself to be rather difficult to analyze in its full
generality and complexity. The systems which allow for at least partially analytical treat-
ment and whose dynamics has been perhaps best studied from various points of view are
either driven harmonic oscillators [4, 10, 15, 17] or periodically kicked quantum Hamilto-
nians [5, 7, 8, 11, 12, 25]. On a more general level, it is widely believed that there exist
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close links between long time behavior of a quantum system and its spectral properties.
For time-independent quantum systems such a relation is manifested by the famous RAGE
theorem, see [30] for a summary and references to the original papers. In a modified form
this theorem has been extended to periodic and quasi-periodic quantum systems [15, 21,
28]. In this case the relevant operator whose spectral properties are of interest is the Floquet
(monodromy) operator. Naturally, much attention has been paid to the spectral analysis of
Floquet operators in some of the papers cited above, see also [2] for more recent results.
Let us mention that a refined analysis of how the spectral properties determine the quantum
dynamics is now available, see for example [9, 16] and other papers, but here we are not
directly concerned with this question.

Thus for periodically time-dependent systems one can distinguish as a related problem
the spectral analysis of the Floquet operator under certain assumptions on the quantum
Hamiltonian. Frequently one writes the time-dependent Hamiltonian in the form H(t) =
H + V (t) while imposing assumptions on the spectral properties of the unperturbed part H

and requiring some sort of regularity from the perturbation V (t). For our purposes an ap-
proach is rather important which is based on the adiabatic methods and which was initiated
by Howland [18, 19] and further extended in [22, 26]. An essential property imposed on
the unperturbed Hamiltonian in this case is the discreteness of the spectrum with increasing
gaps between successive eigenvalues.

Under this hypothesis Nenciu in [27] was not only able to strengthen the results due to
Howland but he derived in addition an upper bound on the diffusive growth of the energy
having the form const ta/n, where a > 0 is given by the spectral properties of H and n is
the order of differentiability of V (t). Inspired by this result on the energy growth, Joye in
[23] considered another class of time-dependent quantum Hamiltonians with rather mild as-
sumptions on the spectral properties of H but, on the other hand, assuming that the strength
of the perturbation V (t) is in some sense small with respect to H . Moreover, as far as the
energy diffusion is discussed, the periodicity of V (t) is required neither in [27] nor in [23].

It is worthwhile to mention that Howland in [20] succeeded to treat also the case when
the spectrum of H is discrete but the gaps between successive eigenvalues are decreasing. To
achieve this goal he restricted himself to certain classes of perturbations V (t) characterized
by the behavior of matrix entries with respect to the eigen-basis of H . In particular, he
discussed as an example the following model: H(t) = |p|α + v(θ, t) in L2(S1,dθ), where
0 < α < 1 and v(θ, t) is in C∞(S1 ×S1). It seems to be natural to look in this case, too, for a
result parallel to that due to Nenciu [27] and to attempt a derivation of a nontrivial bound on
the diffusive growth of energy. But we are aware of only one contribution in this direction
made by Barbaroux and Joye [3]; it is based on the general scheme proposed in [23].

In this paper we wish to complete or to strengthen the results from [3] while making use
of some ideas from [23]. Thus we aim to consider other classes of time-dependent Hamilto-
nians whose unperturbed part H has a discrete spectrum with decreasing gaps. In particular,
the derived results are applicable to the Howland’s model introduced in [20]. In more detail,
we deal with a quantum system described by the Hamiltonian H(t) := H + V (t) acting on
a separable Hilbert space H and such that H is semibounded and has a pure point spectrum
with the spectral decomposition

H =
∑

n∈N

EnPn.

Assume that the eigenvalues E1 < E2 < . . . obey the shrinking gap condition

cH

|m − n|
max{m,n}2γ

≤ |Em − En| ≤ CH

|m − n|
max{m,n}2γ

, (1)
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for some γ ∈]0, 1
2 [ and strictly positive constants cH , CH . Notice that condition (1) implies

En ∼ nα , where α = 1 − 2γ ∈]0,1[ (more precisely, (1) implies that the sequence Enn
−α

is bounded both from below and from above by strictly positive constants for all sufficiently
large n). To simplify the discussion let us assume, without loss of generality, that H is
strictly positive, i.e., E1 > 0.

The time-dependent perturbation V (t) ∈ B(H) is supposed to be T -periodic and C1

in the strong sense. From the strong differentiability it follows that the propagator U(t, s)

associated to the Hamiltonian H +V (t) exists and preserves the domain Dom(H) (see, e.g.,
[24]).

Let us suppose that V is small with respect to the norm

‖V ‖p,γ := sup
t∈[0,T ]

sup
m,n∈N

〈m − n〉p max{m,n}2γ ‖V (t)m,n‖, (2)

where p > 2,

〈m − n〉 := max{1, |m − n|},
and ‖V (t)m,n‖ denotes the norm of the operator

V (t)m,n := PmV (t)Pn : RanPn → RanPm.

We claim that if, in addition, 
p − 1� > 1/(2(1 − α)) then the propagator U(t, s) preserves
the form domain QH = Dom(H 1/2) and for any � from QH one can estimate the long-time
behavior of the energy expectation value by

〈U(t,0)�,HU(t,0)�〉 = O(tσ ) with σ = 2α

2
p − 1�(1 − α) − 1
(3)

(more details are given in Theorem 5 below). Here 
x� is standing for the ceiling of a real
number x, i.e., the smallest integer greater than or equal to x.

Provided that [V (t),V (s)] = 0 for every t, s and
∫ T

0 V (t)dt = 0, the assumption
‖V ‖p,γ ≤ ε can be replaced by ‖V ‖p+1,0 ≤ ε, i.e.,

‖PmV (t)Pn‖ ≤ ε

〈m − n〉p+1
.

The condition [V (t),V (s)] = 0 is satisfied for example when V (t) is a potential (i.e., a
multiplication operator by a function on a certain L2 space) or when the time dependence
of V (t) is factorized, i.e., V (t) = f (t)v, where f (t) is a real-valued (T -periodic and C1)
function and v is a time-independent operator on H .

Let us stress that even though the energy diffusion exponent σ in (3) can be made ar-
bitrarily small provided p is sufficiently large our result is still far away from the situation
when one can prove the dynamical stability in the sense that the energy remains bounded in
time for any initial condition [5]. The point is that the time-dependent perturbation V (t) is
supposed to be sufficiently regular and small by requiring that ‖V ‖p,γ < ε where not only
the norm but also the positive bound ε depends on p (see Theorem 5 below for a precise
formulation). This plays a role also in the analysis of the Howland’s model in Sect. 2.3.1.
In this case, H = |p|α + εv(θ, t) and the exponent σ in (12) tends to 0 as the order of dif-
ferentiability of v(θ, t) in θ , called k, tends to infinity. However the coupling constant ε is
supposed to be sufficiently small in dependence on k and so one cannot claim that σ equals
0 even if v(θ, t) is smooth in θ .
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On the other hand, to our knowledge, non-trivial examples of time-dependent quantum
models for which one can verify this strong type of dynamical stability are rather rare.
A periodically time-dependent quadratic Hamiltonian represents such a model. It is explic-
itly solvable and this is how one can verify the boundedness of energy in the non-resonant
case [15]. A broader class of periodically time-dependent models is shown to be dynami-
cally stable for non-resonant values of frequencies with the aid of the KAM (Kolmogorov–
Arnold–Moser) type method in [1], see also [14] for some additional discussion. In this
connection let us point out a recent example [29] showing that the relationship between the
spectral properties of the Floquet operator and the dynamical stability is not so transparent,
and it may require a considerable amount of efforts to understand it properly.

Let us compare the result of the current paper, as briefly described above, to the results de-
rived in [23] and [3]. Paper [23] focuses on the general scheme and is not so much concerned
with particular cases as that one we are going to deal with here. Nevertheless a possible ap-
plication to the Howland’s classes of perturbations is shortly discussed in Proposition 5.1
and Lemma 5.1. The Howland’s classes are determined by a norm which somewhat differs
from (2), as explained in more detail in Sect. 2.1. But the difference is not so essential to
prevent a comparison. To simplify the discussion let us assume that the eigenvalues of H

are simple and behave asymptotically as En ∼ constnα , with 0 < α < 1. In the particular
case when ‖V ‖p,γ < ∞ for some p > 1 and γ = (1 − α)/2 the bound on the energy diffu-
sion exponent derived in [23] equals α/(2γ − 1

2 ) provided γ > (1+α)/4, i.e., α < 1/3. Our
bound α/(2
p−1�γ − 1

2 ), valid for 0 < α < 1 and provided p > 2 and 
p−1� > 1/(4γ ), is
achieved by making use of the rapid decay of matrix entries of V in the direction perpendic-
ular to the diagonal. It follows that we can make the growth of the energy 〈H 〉� arbitrarily
slow by imposing more restrictive assumptions on the perturbation V , i.e., by letting the
parameter p be sufficiently large.

In paper [3] one treats in fact a larger class of perturbations than we do since one requires
only the finiteness of the norm ‖V ‖p,0 < ∞ for p sufficiently large. In other words, no decay
of matrix entries of V along the diagonal is supposed. On the other hand, one assumes that
the initial quantum state belongs to the domain Dom(Hβ) for β sufficiently large; β is
never assumed therein to be smaller than 3/2. Furthermore, there is no assumption on the
periodicity of H(t) both in [3] and [23]. On the other hand, our assertion concerns all initial
states from the domain Dom(H 1/2) but we need a decay of matrix entries of V along the
diagonal at least of order 2γ = 1 − α. For the sake of comparison let us also recall the
bound on the energy diffusion exponent which has been derived in [3]. It is roughly of
the form α/(1 − f (p))2, where α has the same meaning as above, f (p) is positive and
f (p) = O(p−1) as p → ∞. Hence this bound is never smaller than α and approaches this
value as the parameter p tends to infinity.

2 Upper Bound on the Energy Growth

2.1 The Gap Condition and the Modified Howland’s Classes

On the contrary to Howland who introduced in [20] the classes X (p, δ) equipped with the
norm

‖A‖H
p,δ = sup

m,n

{(mn)δ〈m − n〉p‖Am,n‖; m,n ≥ 1},
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we prefer to work with somewhat modified classes, called Y(p, δ), whose definition is ad-
justed to the gap condition (1). Our choice is dictated by an expected asymptotic behavior
of eigenvalues of H in a typical situation. Let us briefly explain where condition (1) comes
from.

We expect the eigenvalues to behave asymptotically as En = constnα(1 + o(1)), where
the error term o(1) is supposed to tend to zero sufficiently fast. The spectral gaps En+1 −En

tend to zero as n → ∞ if α ∈]0,1[. Keeping the notation γ := (1−α)/2 we wish to estimate
the difference |Em −En|. To this end we replace En simply by the power sequence nα . Then
one gets

mα − nα

m − n
(mn)γ = sinh(αy)

sinh(y)
= e−(1−α)|y| 1 − e−2α|y|

1 − e−2|y| ,

where e2y := m/n. Since the fraction (1 − e−2α|y|)/(1 − e−2|y|) can be estimated by positive
constants both from above and from below we finally find that

C1
|m − n|

max{m,n}2γ
≤ |mα − nα| ≤ C2

|m − n|
max{m,n}2γ

,

for some C1,C2 > 0 and all m,n ∈ N.

Definition 1 Let p ≥ 1, δ ≥ 0 and p + 2δ > 1. We say that an operator A ∈ B(H) belongs
to the class Y(p, δ) if and only if

‖A‖p,δ := sup
m,n∈N

〈m − n〉p max{m,n}2δ‖Am,n‖ < ∞. (4)

Let A(t) be a T -periodic function with values in the space Y(p, δ). With some abuse of
notation we shall also write

‖A‖p,δ := sup
t∈[0,T ]

sup
m,n∈N

〈m − n〉p max{m,n}2δ‖A(t)m,n‖.

Remarks (i) It is straightforward to check that ‖ · ‖p,δ is indeed a norm. Let us note that an
equivalent norm is obtained if one replaces max{m,n} by (m + n) in (4).

(ii) Obviously, Y(p, δ) ⊂ X (p, δ). Notice that Y(p, δ) is a Banach space equipped with
the norm ‖ · ‖p,δ .

(iii) For the sake of convenience we have chosen the norm (4) with the restrictions p ≥ 1,
δ ≥ 0 and p + 2δ > 1 so that if it is finite for a matrix {Amn}, Amn ∈ B(RanPn,RanPm),
then the matrix corresponds to a bounded operator A ∈ B(H). Indeed, it is so since one can
estimate the operator norm ‖A‖ by the Shur–Holmgren norm

‖A‖SH := max

{
sup
m∈N

∑

n∈N

‖Am,n‖, sup
n∈N

∑

m∈N

‖Am,n‖
}
.

It clearly holds

‖A‖SH ≤ ‖A‖p,δ sup
m∈N

∞∑

n=1

1

〈m − n〉p max{m,n}2δ
.
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The sum on the RHS equals

1

m2δ
+

m−1∑

n=1

1

(m − n)pm2δ
+

∞∑

n=m+1

1

(n − m)pn2δ
≤ 2 + 1

m2δ

∫ m

1

dx

xp
+

∞∑

k=1

1

kp+2δ

= 2 + 1 − m−p+1

(p − 1)m2δ
+ ζ(p + 2δ).

Setting temporarily x = ln(m) and ε = p − 1 one can make use of the inequality

1

ε
(e−2δx − e−(ε+2δ)x) ≤ 1

ε + 2δ
,

which is true for all x ≥ 0 provided ε ≥ 0, δ ≥ 0 and ε + 2δ > 0. Thus one arrives at the
estimate

‖A‖SH ≤
(

2 + 1

p + 2δ − 1
+ ζ(p + 2δ)

)
‖A‖p,δ.

Here ζ(u) := ∑∞
k=1 k−u denotes the Riemann’s zeta function.

(iv) Finally let us note that the value p = ∞ is admissible. We shall use the norm ‖ · ‖∞,δ

exclusively in the case of diagonal matrices when it simply reduces to

‖A‖∞,δ := sup
n∈N

n2δ‖An,n‖.

From Definition 1 one immediately deduces the following lemma.

Lemma 2 Suppose that H is an operator on H with pure point spectrum whose eigenvalues
E1 < E2 < . . . obey the upper bound in (1). Let p > 2. If A ∈ Y(p, δ) then the commutator
[A,H ] lies in Y(p − 1, δ + γ ) and

‖[A,H ]‖p−1,δ+γ ≤ CH ‖A‖p,δ.

A basic technical tool we need is a lemma concerned with products of two classes Y . For
its proof as well as for the remainder of the paper the following two elementary inequalities
will be useful. According to the first one, for every m,k ≥ 1 it holds

m

k
≤ 2〈m − k〉. (5)

In fact, this is a direct consequence of the implication a, b ≥ 1 �⇒ a + b ≤ 2ab.
The second inequality claims that if a, b ≥ 0 then

〈a + b〉
〈a〉〈b〉 ≤ 2

〈min{a, b}〉 .

This can be reduced to the inequality 〈2a〉 ≤ 2〈a〉 which is quite obvious.

Lemma 3 Consider two classes Y(p1, δ1), Y(p2, δ2), with p1,p2 > 1, δ1, δ2 ≥ 0. Suppose
that numbers p, δ satisfy the inequalities

1 < p ≤ min{p1,p2}, max{δ1, δ2} ≤ δ ≤ δ1 + δ2,

p + 2δ ≤ min{p1 + 2δ1,p2 + 2δ2}.
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If A ∈ Y(p1, δ1) and B ∈ Y(p2, δ2) then

‖AB‖p,δ ≤ C(p, δ − δ0)‖A‖p1,δ1‖B‖p2,δ2 , (6)

where

C(p,�) = 2p+2�+1(1 + 2ζ(p))

and δ0 = min{δ1, δ2}. Consequently, Y(p1, δ1)Y(p2, δ2) ⊂ Y(p, δ).

Proof Under the assumptions we have

〈m − n〉p max{m,n}2δ‖(AB)mn‖ ≤ 〈m − n〉p max{m,n}2δ

∞∑


=1

‖Am
‖‖B
n‖

which is less than or equal to

‖A‖p1,δ1‖B‖p2,δ2

∞∑


=1

〈m − n〉p max{m,n}2δ

〈m − 
〉p1 max{m,
}2δ1〈n − 
〉p2 max{n, 
}2δ2
. (7)

The summand in (7) can be estimated from above by

〈|m − 
| + |n − 
|〉p max{m,n}2δ

〈m − 
〉p1 max{m,
}2δ1〈n − 
〉p2 max{n, 
}2δ2
≤ 2p

〈min{|m − 
|, |n − 
|}〉p h(m,n, 
),

where

h(m,n, 
) = 〈m − 
〉p−p1〈n − 
〉p−p2
max{m,n}2δ

max{m,
}2δ1 max{n, 
}2δ2
.

One can further estimate h(m,n, 
). For definiteness let us suppose that m ≥ n. Then, since
p − p2 ≤ 0 and δ2 ≥ δ − δ1,

h(m,n, 
) ≤ 〈m − 
〉p−p1
m2δ

max{m,
}2δ1 max{n, 
}2(δ−δ1)
≤ 〈m − 
〉p−p1

(
m




)2(δ−δ1)

≤ 22(δ−δ1)〈m − 
〉p−p1+2(δ−δ1) ≤ 22(δ−δ0).

It follows easily that the sum in (7) is bounded from above by 2p+2(δ−δ0)(2+4ζ(p)) and this
estimate implies (6). �

Corollary 4 Let p > 2, i ≥ 1 and γ ∈]0, 1
2 [. Then the following product formulas hold true:

Y(p, iγ )Y(p, iγ ) ⊂ Y(p − 1, (i + 1)γ ),

Y(p, (i − 1)γ )Y(p − 1, iγ ) ⊂ Y(p − 1, iγ ),

Y(p + 1, (i − 1)γ )Y(p − 1, (i + 1)γ ) ⊂ Y(p − 1, (i + 1)γ ).

The formulas are also true for the opposite order of factors on the LHS. Moreover, if opera-
tors A and B belong to the corresponding classes on the LHS then

‖AB‖p−1,(i+1)γ ≤ Cp‖A‖p,iγ ‖B‖p,iγ ,

‖AB‖p−1,iγ ≤ Cp‖A‖p,(i−1)γ ‖B‖p−1,iγ ,

‖AB‖p−1,(i+1)γ ≤ 2Cp‖A‖p+1,(i−1)γ ‖B‖p−1,(i+1)γ ,
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where

Cp := 2p+1(1 + 2ζ(p − 1)). (8)

The norm estimates hold true also for the opposite order of factors A and B in the product.

2.2 The Main Theorem

Theorem 5 Let a quantum system be described by a Hamiltonian of the form

H(t) = H + V (t) on H ,

where H is a self-adjoint operator with a pure point spectrum and the spectral decomposi-
tion

H =
∑

n∈N

EnPn.

Suppose that the eigenvalues of H are ordered increasingly and obey the gap condition (1)
with γ ∈]0, 1

2 [ . Set α = 1 − 2γ . For p > 2 assume that


p − 1� >
1

2(1 − α)
. (9)

Then there exists ε > 0 such that if V (t) is T -periodic, symmetric, continuously differen-
tiable in the strong sense and obeys ‖V ‖p,γ ≤ ε then the propagator U(t, s) associated
to the Hamiltonian H + V (t) maps QH , the form domain of H , onto itself and for every
� ∈ QH it holds

〈H 〉�(t) := 〈U(t,0)�,HU(t,0)�〉 = O(tσ ), (10)

where

σ = 2α

2
p − 1�(1 − α) − 1
.

Remark 6 (i) There is no assumption on the dimension of RanPn. The multiplicities of
eigenvalues may grow arbitrarily, they can even be infinite.

(ii) Suppose that V (t) ∈ Y(p+1,0), with p > 2, is T -periodic, symmetric, continuously
differentiable in the strong sense and such that [V (t),V (s)] = 0 for every t, s, and V̄ :=
T −1

∫ T

0 V (t)dt = 0. Then one arrives at the same estimate (10). Let us outline the proof.
First, as explained in Remark 12 below in which one has to set r = p + 1, Y = 0, Z(t) =

V (t) and Z̄ = 0, one can transform anti-adiabatically H + V (t) into H + V1(t) so that
V1(t) ∈ Y(p, γ ) and

‖V1‖p,γ ≤ CH

2Cp+1
(exp(4Cp+1T ‖V ‖p+1,0) − 1).

Afterwards one can apply Theorem 5 to the Hamiltonian H +V1(t). Arguing similarly as in
the proof of Theorem 5 in Sect. 3.2, one finds that the energy diffusion for the Hamiltonian
H + V1(t) is related to that for the Hamiltonian H + V (t) by a quantity which is bounded
in time. This is to say that estimate (10) holds true for the time evolution governed by the
Hamiltonian H + V (t) as well.
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(iii) Provided that H(t) = H + V (t), with V in C1(R,B(H)) in the strong sense there
exists a trivial bound which does not depend on the spectral properties of H (see [27]),
namely

|〈U(t,0)�,H(t)U(t,0)�〉| ≤ |〈�,H(0)�〉| + |t | sup
s∈R

‖V̇ (s)‖‖�‖2. (11)

For its derivation it suffices to notice that

∂t 〈U(t,0)�,H(t)U(t,0)�〉 = 〈U(t,0)�, V̇ (t)U(t,0)�〉,

where V̇ (t) denotes the time derivative in the strong sense. The estimate given by Theorem 5
is better than this trivial bound if


p − 1� > pmin := 2α + 1

2(1 − α)
.

For example, in the case of α = 2/3 (the quantum ball) we get pmin = 7/2. The condition

p − 1� > pmin is fulfilled if p > 4 and then Theorem 5 tells us that 〈H 〉�(t) = O(t4/5).

(iv) Apart of the energy itself it is also of interest to consider expectation values of func-
tions of the Hamiltonian f (H) for a suitable choice of the function f (λ), see for example
[22, Sect. 3]. In particular this concerns the momenta Hm, m ∈ N. Unfortunately only sev-
eral steps of our procedure allow for an immediate extension of this type and so we are not
able at the moment to deal with this more general case. Let us discuss shortly this point. By
inspection of the proofs of Theorem 9 and Lemma 10 one finds that in both of them one
can safely replace H by f (H) as long as the sequence {f (En)} satisfies, instead of {En},
all assumptions. The propagator U(t, s) in the formulation of Theorem 9 is still associated
to the operator H + W(t). The main obstacle is encountered in the proof of Theorem 5 in
Sect. 3.2. In analogy to estimate (15) one can derive that

〈Ũ (t,0)�̃, f (H)Ũ(t,0)�̃〉 = 〈U(t,0)�,J (t)f (H)J (t)∗U(t,0)�〉 = O(tσ ),

where σ is the same as in (15). Here J (t) is, as detailed in the remainder of the paper, a
suitable unitary operator constructed with the aid of the anti-adiabatic transform. As a next
step in the proof of Theorem 5 one argues that the difference H − J (t)HJ (t)∗ is bounded.
However it does not seem to be possible to claim in general the same for the operator f (H)−
J (t)f (H)J (t)∗. And this is exactly the point where the discussed extension fails.

2.3 Applications

2.3.1 The Howland’s Model

Let us apply the results of Theorem 5 to the model introduced by Howland in [20] and
described by the Hamiltonian |p|α + εv(θ, t), with α ∈]0,1[ , which is supposed to act on
L2(S1,dθ) and to be 2π -periodic in time. Set H := |p|α . The spectral decomposition of H

reads

H =
∑

n≥0

nαPn, where Pn�(θ) = 1

π

∫ 2π

0
cos(n(θ − s))�(s)ds.
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Except of the first one the multiplicities of the eigenvalues are equal 2. Using integration
by parts one derives that any multiplication operator a by a function a(θ) ∈ Ck obeys the
estimate

‖PmaPn‖ ≤ 2
√

2π‖a(k)‖
〈m − n〉k .

Hence a ∈ Y(k,0). Applying Theorem 5 and Remark 6 ad (6) we get

Proposition 7 Let α ∈]0,1[ and v(θ, t) be a real-valued function which is 2π -periodic both
in the space and in the time variable. Suppose that v(θ, t) is Ck in θ and C1 in t and such
that

∫ 2π

0 v(θ, t)dt = 0. If k > 3 and k > (5 − 4α)/(2(1 − α)) then there exists ε0 > 0 such
that for every real ε, |ε| < ε0, the propagator U(t, s) associated to

H(t) := |p|α + εv(θ, t) on L2(S1,dθ),

preserves the domain Dom(|p|α/2) and for every � from this domain it holds true that

〈U(t,0)�,H(t)U(t,0)�〉 = O(tσ ),

where

σ = 2α

2(k − 2)(1 − α) − 1
. (12)

Let us summarize that the energy diffusion exponent in the Howland’s model can be
made arbitrarily small provided the potential on the circle is sufficiently smooth and the
coupling constant is sufficiently small.

2.3.2 Discrete Hamiltonian on the Half-Line with a Slowly Growing Potential

Discrete models on a lattice are frequently and intensively studied. Here we are inspired by
Example 5.1 in [3]. In contrast to it we restrict ourselves to the usual discrete Laplacian on
the half-line rather than considering a long-range Laplacian on the line. To fit the assump-
tions on which the current paper is based, in particular the gap condition (1), we further
restrict ourselves to slowly growing discrete potentials V (n) = nα for some α, 0 < α < 1.
Thus we do not cover the most interesting linear case V (n) = n.

Set H = l2(N). Let � be the discrete Laplacian on the half-line,

(�ψ)(1) = ψ(2), (�ψ)(n) = ψ(n − 1) + ψ(n + 1) for n ≥ 2.

Further fix a parameter α, 0 < α < 1, and define

(V ψ)(n) = nαψ(n), ∀n.

Let us consider the Hamiltonian H(t) = −�+λa(t)V , where a(t) is a T -periodic function,
a ∈ C1 and a(t) ≥ a0 > 0, ∀t ∈ R, λ > 0 is a coupling constant. Set

b(t) = λ

∫ t

0
a(s)ds, φ(t) = 1

λa(b−1(t))
,

and

H1(t) = V − φ(t)�.
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Hence H(t) = λa(t)H1(b(t)). Observe that b(t) = O(t) and

b(t + T ) = b(t) + λκ, where κ =
∫ T

0
a(s)ds.

Hence b−1(t +λκ) = b−1(t)+T . The function φ(t) is readily seen to be C1 and λκ-periodic.
Denote by U1(t, s) the propagator associated to H1(t). Then U(t, s) = U1(b(t), b(s)) is the
propagator associated to H(t).

Now one can apply Theorem 5 to the Hamiltonian H1(t). The unperturbed part V is
diagonal in the standard basis in l2(N), and the eigenvalues obey the gap condition (1). On
the other hand, the perturbation −φ(t)� is strongly differentiable and belongs to Y(p,0)

for all p ≥ 1. Theorem 5 jointly with Remark 6 ad (6) implies that for any σ > 0 and all
initial conditions � ,

〈U1(t,0)�,V U1(t,0)�〉 = O(tσ ),

as long as λ ≥ λ0(σ ), where λ0(σ ) is a lower bound depending on σ . Replacing t by b(t)

one finds that

〈U(t,0)�,V U(t,0)�〉 = O(tσ ).

3 Derivation of the Main Result

3.1 Two Additional Theorems

The proof of Theorem 5 is based on the following two theorems, Theorem 8 and Theorem 9.
In what follows we use the notation D := −i∂t on the interval [0, T ] with the periodic
boundary condition.

Theorem 8 Let K = D + H + V (t) be a Floquet Hamiltonian on L2([0, T ],H), with H

and V (t) satisfying the assumptions of Theorem 5. Let p > 2 and q < p − 1 be a natural
number. Then there exists ε > 0 such that ‖V ‖p,γ ≤ ε implies the existence of a T -periodic
family of unitary operators J (t) on H which is continuously differentiable in the strong
sense and such that

K = J (t)(D + H + A + B(t))J (t)∗,

where B(t) ∈ Y(p − q, (q + 1)γ ) is T -periodic, Hermitian and strongly continuously dif-
ferentiable, and A is bounded, symmetric and commutes with H .

The remainder of the current paper is concerned with the proof of Theorem 8. Theorem 9
to follow is a mere modification of Proposition 5.1 in [23] in combination with some ideas
from [3, Sect. 2]. This is why we present its proof in a rather sketchy form. Let us also note
that the basic idea standing behind the estimates goes back to Nenciu [27].

Theorem 9 Let H be a positive operator with a pure point spectrum and the spectral
decomposition H = ∑

n EnPn. Assume that the eigenvalues 0 < E1 < E2 < . . . satisfy
En = O(nα), with α > 0. Set Qn = 1 − Pn. Let an operator-valued function W(t) ∈ B(H)

be Hermitian, C1 in the strong sense and such that

∀n ∈ N, ‖PnW(t)QnH
−1/2‖ ≤ const

nμ+ α
2
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uniformly in time for some μ > 1/2. Then the propagator U(t, s) associated with H +W(t)

preserves QH , the form domain of H , and for every � from QH ,

〈U(t,0)�,HU(t,0)�〉 = O(t2α/(2μ−1)).

Remark The bound on the energy expectation value is nontrivial if μ > 1
2 + α.

Proof Let

Wd(t) :=
∞∑

n=1

PnW(t)Pn

be the diagonal part of W(t). It is straightforward to see that Wd(t) is again C1 in the strong
sense. Let Ud(t, s) be the propagator associated to H + Wd(t). Since Wd(t) commutes with
H the same is true for Ud(t, s). Equivalently this means that Ud(t, s) commutes with all
projectors Pn. From the Duhamel’s formula we have

R(t) := U(t,0) − Ud(t,0) = −i
∫ t

0
Ud(t, s)

(
W(s) − Wd(s)

)
U(s,0)ds.

Fix t > 0 and choose � ∈ Dom(H) ⊂ Dom(H 1/2). Notice that Pn(W(s) − Wd(s)) =
PnW(s)Qn. For any t ′, 0 ≤ t ′ ≤ t , it holds

‖H 1/2U(t ′,0)�‖2 =
∞∑

n=1

En‖PnU(t ′,0)�‖2 ≤ EN‖�‖2 +
∞∑

n=N+1

En‖PnU(t ′,0)�‖2.

Furthermore,

‖PnU(t ′,0)�‖2 ≤ 2(‖Pn�‖2 + ‖PnR(t ′)�‖2)

and

‖PnR(t ′)�‖ ≤
∫ t

0
‖PnW(s)QnH

−1/2‖ds sup
0≤s≤t

‖H 1/2U(s,0)�‖

≤ ct

nμ+ α
2

sup
0≤s≤t

‖H 1/2U(s,0)�‖.

From these estimates one concludes that for any t > 0, all � ∈ Dom(H), N ∈ N and
some positive constants c1, c2 independent of t , � and N it holds

(
1 − c1t

2

N2μ−1

)
sup

0≤s≤t

‖H 1/2U(s,0)�‖2 ≤ c2N
α‖�‖2 + 2‖H 1/2�‖2.

Setting N = [Ct2/(2μ−1)], where C > 0 is a sufficiently large constant one deduces that there
exists c3 > 0 such that it holds

‖H 1/2U(t,0)�‖2 ≤ c3(t
2α/(2μ−1)‖�‖2 + ‖H 1/2�‖2), (13)

for all t ≥ 1 and � ∈ Dom(H).
One can extend the validity of (13) to � ∈ Dom(H 1/2). To this end it suffices to

use the fact that Dom(H 1/2) is a Banach space with respect to the norm ‖�‖∗ =
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(‖�‖2 + ‖H 1/2�‖2)1/2, and Dom(H) ⊂ Dom(H 1/2) is a dense subspace. Choosing � ∈
Dom(H 1/2) one can find a sequence {�k} in Dom(H) such that �k → � in Dom(H 1/2).
Then (13) implies that {U(t,0)�k} is a Cauchy sequence in Dom(H 1/2) whose limit neces-
sarily equals U(t,0)� . Hence Dom(H 1/2) is U(t,0)-invariant and (13) is valid also for all
� ∈ Dom(H 1/2). This concludes the proof. �

3.2 Proof of Theorem 5

Here we show how Theorem 5 follows from Theorem 8 and Theorem 9.

Lemma 10 Assume that H is a positive operator with a pure point spectrum and the spec-
tral decomposition H = ∑∞

n=1 EnPn, and such that the eigenvalues satisfy infEnn
−α > 0,

with α > 0. Set Qn = 1 − Pn. Then for any p ≥ 1 there exists a constant c(p,α) > 0 such
that for all δ > 0,

∀B ∈ Y(p, δ),∀n ∈ N, ‖PnBQnH
−1/2‖ ≤ c(p,α)

‖B‖p,δ

n2δ+ α
2

.

Proof Suppose that B ∈ Y(p, δ). By the assumptions, En ≥ cnα for all n and some c > 0.
We have

‖PnBQnH
−1/2‖2 ≤

∑

m,m �=n

‖Bn,m‖2

Em

≤ 1

c

∑

m,m �=n

‖B‖2
p,δ

|m − n|2p max{m,n}4δmα
.

Now one splits the range of summation in m into three segments: 1 ≤ m < n/2, n/2 ≤ m < n

and n < m. For each case one can apply elementary and rather obvious estimates to show
that the expression decays in n at least as n−4δ−α . In the first case one has to use the fact that
α < 1. We omit the details. �

Proof of Theorem 5 Theorem 8, with q := 
p−2�, implies the existence of a transformation

K = J (t)(D + H + A + B(t))J (t)∗, (14)

where A is bounded and diagonal and B(t) ∈ Y(p − q, (q + 1)γ ). Since p > 2 and q =

p−2� we have q ≥ 1 and p−q > 1. Set W(t) := A+B(t). Then PnW(t)Qn = PnB(t)Qn.
The gap condition (1) guarantees that the assumptions of Lemma 10 are satisfied and thus
one finds that

‖PnW(t)QnH
−1/2‖ = ‖PnB(t)QnH

−1/2‖ ≤ const · n−μ− α
2 ,

with μ = 2(q + 1)γ = 
p − 1�(1 − α). Notice that assumption (9) means that μ > 1/2. In
virtue of Theorem 9, the propagator Ũ (t, s) associated to H + W(t) maps the form domain
QH onto itself and fulfills

〈Ũ (t,0)�̃,HŨ(t,0)�̃〉 = O(tσ ), with σ = 2α

2
p − 1�(1 − α) − 1
, (15)

for every �̃ ∈ QH .
Equality (14) implies that

H + V (t) = J (t)HJ (t)∗ + iJ̇ (t)J (t)∗ + J (t)W(t)J (t)∗. (16)
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Since the family J (t) is known to be continuously differentiable in the strong sense it fol-
lows from the uniform boundedness principle that the derivative J̇ (t) is a bounded operator.
Moreover, using the periodicity and applying the uniform boundedness principle once more
one finds that ‖J̇ (t)‖ is bounded uniformly in t . Hence all operators occurring in equality
(16), except of H , are bounded. One deduces from (16) that J (t) maps DomH onto itself for
every t and that the same is also true for the form domain. Set U(t, s) := J (t)Ũ (t, s)J (s)∗.
Then U(t, s) is the propagator corresponding to H + V (t). For any � ∈ QH we have

〈H 〉�(t) = 〈U(t,0)�,HU(t,0)�〉 = 〈U(t,0)�,J (t)HJ (t)∗U(t,0)�〉 + O(1)

= 〈Ũ (t,0)�̃,HŨ(t,0)�̃〉 + O(1) = O(tσ ),

where �̃ := J (0)∗� . This proves the theorem. �

3.3 The Idea of the Proof of Theorem 8

It remains to prove Theorem 8. The proof is somewhat lengthy and the remainder of the
paper is devoted to it. Let us explain the main idea. The proof combines the anti-adiabatic
transformation due to Howland (see Sect. 4) with a (properly modified) diagonalization
method, as presented in [13] (see Sect. 5). This procedure is applied repeatedly until achiev-
ing the required properties of the perturbation. Let us describe one step in this approach
when starting from the Floquet Hamiltonian

K� := D + H + Y + Z(t),

where Y ∈ Y(∞, γ ) is Hermitian and diagonal (i.e., commuting with H ) and Z(t) ∈
Y(r, iγ ) is symmetric, T -periodic and strongly C1. The parameters are supposed to satisfy
i ≥ 1, r > 2.

Firstly, using the anti-adiabatic transform we try to improve the decay of entries of Z(t)

along the main diagonal when paying for it by a worse decay of elements in the direction
perpendicular to the diagonal. In more detail, we would like to transform Z(t) ∈ Y(r, iγ )

into Z♦(t) ∈ Y(r − 1, (i + 1)γ ). Unfortunately, we are not able to get rid of the extra term
Z̄ ∈ Y(r, iγ ), the time average of Z(t). The anti-adiabatic transform can be schematically
described as

K� = D + H + Y + Z(t) → K♦ = D + H + Y + Z̄ + Z♦(t).

To cope with the unwanted extra term we apply afterwards a diagonalization procedure
which in fact means the transform

K♦ = D + H + Y + Z̄ + Z♦(t) → K♥ := D + H + A + B(t),

where A and B(t) already have the desired properties, i.e., B(t) ∈ Y(r − 1, (i + 1)γ ) is
symmetric, T -periodic and strongly C1, and A ∈ Y(∞, γ ) is Hermitian and commuting
with H .

4 The Anti-Adiabatic Transform

In this section we adapt the strategy of Howland [20] and make precise the mapping
K� → K♦, as announced in Sect. 3.3. Using the anti-adiabatic transform, i.e., roughly
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speaking, by applying the commutator with H one can improve the decay of matrix entries
of the perturbation along the main diagonal at the expense of a slower decay in the direc-
tion perpendicular to the diagonal. Using the language of classes Y(p, δ), the anti-adiabatic
transform may be viewed as passing from a perturbation Z(t) ∈ Y(p, δ) to a new perturba-
tion Z1(t) ∈ Y(p − 1, δ + γ ) where γ comes from the gap condition (1) (see Lemma 2).

Let us introduce the transform in detail. Let K� be a Floquet Hamiltonian of the form

K� = D + H + Y + Z(t),

with H satisfying the assumptions of Theorem 5, Y ∈ Y(∞, γ ) being Hermitian and com-
muting with H , and Z(t) ∈ Y(r, iγ ) being Hermitian, T -periodic and continuous in the
strong sense. By the uniform boundedness principle, ‖Z(t)‖ is bounded uniformly in t . The
parameters are supposed to satisfy r > 2, i ≥ 1. Set

Z̄ := 1

T

∫ T

0
Z(t)dt, Z̃(t) = Z(t) − Z̄.

Define

F(t) :=
∫ t

0
Z̃(s)ds,

so that F(t) is Hermitian, T -periodic, strongly C1 and lying in Y(r, iγ ). Let us define K♦
by the gauge-type transformation of K�,

K♦ := eiF(t)K�e−iF(t) = D + H + Y + Z̄ + Z♦(t),

with

Z♦(t) = eiF(t)(D + H + Y + Z(t))e−iF(t) − (D + H + Y + Z̄). (17)

The main result related to the anti-adiabatic transform is as follows.

Proposition 11 Let r > 2, i ≥ 1, γ ∈]0, 1
2 [, and H be a self-adjoint operator with a pure

point spectrum and the spectral decomposition H = ∑
n EnPn. Assume that the eigenvalues

{En}∞
n=1 are ordered increasingly and satisfy the inequality

|Em − En| ≤ CH

|m − n|
max{m,n}2γ

.

Furthermore, Y and Z(t) obey the assumptions formulated above.
Then Z♦(t) defined in (17) is T -periodic, continuous in the strong sense, Hermitian, and

lies in Y(r − 1, (i + 1)γ ). The norm of Z♦ obeys the bound

‖Z♦‖r−1,(i+1)γ ≤ exp(4CrT ‖Z‖r,iγ ) − 1

2Cr

(CH + 4‖Y‖∞,γ + 2Cr‖Z‖r,iγ ), (18)

with the constant Cr defined in (8). The operator-valued function eiF(t) is C1 in the strong
sense. Moreover, if Z(t) is C1 in the strong sense then the same is true for Z♦(t).

Proof The periodicity and the differentiability are clear from the above discussion. The RHS
of (17) can be expanded according to the formula

eABe−A = B +
∞∑

j=1

1

j ! adj

A(B).
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Here we use the notation adA(B) := [A,B] = AB − BA. Since adF(t) D = iḞ (t) = iZ̃(t)

we get

Z♦(t) =
∞∑

j=1

ij

j ! adj−1
F(t)(iZ̃(t) + [F(t),H + Y + Z(t)]) + Z̃(t)

=
∞∑

j=1

ij

j ! adj−1
F(t) X(t), (19)

where

X(t) := adF(t)

(
H + Y + Z(t) − 1

j + 1
Z̃(t)

)

= adF(t)

(
H + Y + j

j + 1
Z(t) + 1

j + 1
Z̄

)
.

By Lemma 2, adF(t) H ∈ Y(r − 1, (i + 1)γ ), and according to Corollary 4, the same holds
true for adF(t) Z(t) and adF(t) Z̄. Notice also that ‖Z̄‖p,δ ≤ ‖Z‖p,δ . Furthermore, since Y ∈
Y(∞, γ ) is diagonal we have

〈m − n〉r−1 max{m,n}2(i+1)γ ‖(F (t)Y )m,n‖

≤ 1

〈m − n〉
(

max{m,n}
n

)2γ

n2γ ‖F‖r,iγ ‖Yn,n‖ ≤ 22γ ‖F‖r,iγ ‖Y‖∞,γ .

Hence ‖F(t)Y‖r−1,(i+1)γ ≤ 2‖F‖r,iγ ‖Y‖∞,γ . The same estimate is true for ‖YF(t)‖r−1,(i+1)γ

and therefore ‖ adF Y‖r−1,(i+1)γ ≤ 4‖F‖r,iγ ‖Y‖∞,γ . We conclude that X(t) belongs to
Y(r − 1, (i + 1)γ ) and

‖X‖r−1,(i+1)γ ≤ ‖F‖r,iγ (CH + 4‖Y‖∞,γ + 2Cr‖Z‖r,iγ ). (20)

Recalling Corollary 4 once more we have

Y(r − 1, (i + 1)γ )Y(r, iγ ), Y(r, iγ )Y(r − 1, (i + 1)γ ) ⊂ Y(r − 1, (i + 1)γ )

and so adj−1
F(t) X(t) lies in Y(r − 1, (i + 1)γ ) as well and

‖adj−1
F X‖r−1,(i+1)γ ≤ (2Cr‖F‖r,iγ )j−1‖X‖r−1,(i+1)γ . (21)

Consequently, the series (19) converges in the Banach space Y(r − 1, (i + 1)γ ). To derive
inequality (18) from (20) and (21) one applies the estimate ‖F‖r,iγ ≤ 2T ‖Z‖r,iγ which
immediately follows from the definition of F(t) and Z̃(t). This completes the proof. �

Remark 12 The proposition holds also true for i = 0 provided [Z(t),Z(s)] = 0 for every
t, s. In this case F(t) commutes with Z(t) and Z̄, and the formula (19) holds true with
X(t) = adF(t)(H + Y ). Repeating the steps from the proof of the proposition one arrives at
the inequality

‖Z♦‖r−1,(i+1)γ ≤ exp(4CrT ‖Z‖r,iγ ) − 1

2Cr

(CH + 2‖Y‖∞,γ ).
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5 The Diagonalization Procedure

5.1 Formulation of the Result

The main result of this section is formulated in the following proposition.

Proposition 13 Let i ≥ 1 be a natural number, γ ∈]0, 1
2 [ , and H be a self-adjoint operator

with a pure point spectrum and the spectral decomposition H = ∑
n EnPn. Assume that the

eigenvalues {En}∞
n=1 are ordered increasingly and satisfy the inequality

|Em − En| ≥ cH

|m − n|
max{m,n}2γ

. (22)

Let Y ∈ Y(∞, γ ) be Hermitian and commuting with H . Suppose that Z̄ is Hermitian and
belongs to the class Y(r, iγ ) for some r > 2. Finally, assume that

‖Y‖∞,γ + ‖Z̄‖r,iγ ≤ cH

4πCr+1
, (23)

with the constant Cr+1 given by (8).
Then there exists U , a unitary operator on H , such that

U(H + Y + Z̄)U ∗ = H + A, (24)

where A ∈ Y(∞, γ ) commutes with H and obeys

‖A‖∞,γ ≤ 2(‖Y‖∞,γ + ‖Z̄‖r,iγ ). (25)

Moreover, for every operator X ∈ Y(r − 1, (i + 1)γ ) it holds

‖UXU ∗‖r−1,(i+1)γ ≤ exp

(
2

Cr

Cr+1

)
‖X‖r−1,(i+1)γ . (26)

Since U does not depend on time this result can be interpreted in the following way.

Corollary 14 Let us consider a Floquet Hamiltonian of the form

K♦ = D + H + Y + Z̄ + Z♦(t),

where H , Y and Z̄ obey the same assumptions as in Proposition 13, with r > 2 and i ≥ 1,
and Z♦(t) ∈ Y(r −1, (i +1)γ ) is T -periodic, continuously differentiable in the strong sense
and Hermitian.

Then there exists a unitary operator U on H such that for the transformed Floquet
Hamiltonian

K♥ := UK♦U ∗ = D + H + A + B(t)

it holds: A ∈ Y(∞, γ ) commutes with H and fulfills (25),

B(t) := UZ♦(t)U ∗ ∈ Y(r − 1, (i + 1)γ )

is T -periodic, continuously differentiable in the strong sense, Hermitian and satisfies

‖B‖r−1,(i+1)γ ≤ exp

(
2

Cr

Cr+1

)
‖Z♦‖r−1,(i+1)γ .
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The proof of Proposition 13 is a modification (to the case of shrinking gaps) of a diago-
nalization procedure introduced in [13] and conventionally called the progressive diagonal-
ization method.

5.2 The Algorithm

The diagonalization procedure is constructed iteratively, let us first describe the algorithm.
Starting from H + Y + Z̄ we construct the first 4-tuple of operators

U0 := 1, G1 := Y + diag Z̄, V1 := offdiag Z̄, H1 := H + G1 + V1,

where

diagX :=
∑

n∈N

PnXPn, offdiagX :=
∑

m�=n

PmXPn

denote the diagonal and the off diagonal part of the matrix of an operator X with respect to
the eigen-basis of H . We define recursively a sequence of operators Hs , Gs , Vs , Ws and Us

by the following rules: provided Gs and Vs have been already defined let Ws be the solution
of

[H + Gs,Ws] = Vs and diagWs = 0. (27)

We define

Hs+1 := eWs Hse
−Ws . (28)

Finally, we set

Us := eWs Us−1, Gs+1 := diagHs+1 − H, Vs+1 := offdiagHs+1. (29)

Since Hs = H + Gs + Vs for all s and with the aid of (27) one derives from (28) that

Hs+1 = Hs +
∞∑

k=1

1

k! adk−1
Ws

[Ws,Hs] = H + Gs + Vs +
∞∑

k=1

1

k! adk−1
Ws

(−Vs + [Ws,Vs])

= H + Gs + �(adWs )Vs, (30)

where

�(x) :=
∞∑

k=1

k

(k + 1)!x
k = ex − 1

x
(ex − 1). (31)

Observe also that in the course of the algorithm, Gs is always diagonal (commuting with
H ) and symmetric, Vs is symmetric and off diagonal, Ws is antisymmetric and off diagonal.
Therefore eWs and Us are unitary. It is straightforward to prove by induction that for every
s = 1,2, . . . ,

H + Gs+1 + Vs+1 = Us(H + Y + Z̄)U ∗
s . (32)
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5.3 Auxiliary Facts

To solve the commutator equation (27) we need the following result taken from a paper by
Bhatia and Rosenthal.

Lemma 15 [6] Let E and F be two Hilbert spaces. Let A and B be Hermitian operators
(i.e., bounded and self-adjoint) on E and F , respectively, such that dist(σ (A),σ (B)) > 0.
Then for every bounded operator Y : F → E there exists a unique bounded operator X :
F → E such that

AX − XB = Y.

Moreover, the inequality

‖X‖ ≤ π

2 dist(σ (A),σ (B))
‖Y‖,

holds true.

Remark The solution X is given by

X =
∫

R

e−itAY eitBf (t)dt,

for any f ∈ L1(R) such that its Fourier image obeys f̂ (s) = 1/
√

2πs on the set
σ(A) − σ(B). This implies ‖X‖ ≤ ‖f ‖1‖Y‖, and optimizing over such f one gets the
constant π/2.

In the algorithm plays a certain role the function �(x) introduced in (31). It is supposed
to be defined on the interval [0,∞[. Let us point out here some of its elementary proper-
ties. This is a strictly increasing function mapping the interval [0,∞[ onto itself. It holds
�(0) = 0, �(1) = 1, and so the function maps also the interval ]0,1[ onto itself. Moreover,
�(x) is a convex function and so

∀x ∈]0,1[, �(x) < x. (33)

Further, let us consider a sequence {xs}∞
s=1 formed by nonnegative numbers obeying the

inequalities

∀s ∈ N, xs+1 ≤ �(xs)xs. (34)

If x1 < 1 then the sequence is non-increasing and (33, 34) imply that xs+1 ≤ x2
s . It follows

that

∀s ∈ N, xs ≤ x2s−1

1 ,

and
∞∑

s=1

xs ≤ x1

1 − x1
< ∞. (35)
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5.4 Convergence of the Algorithm

Proof of Proposition 13 We have to prove that Vs → 0, Gs → A and Us → U . The key
ingredient of the algorithm is the control of the size of Ws given as the off diagonal solution
to the commutator equation (27). For every m �= n we seek Ws(m,n) such that

(Em + (Gs)m,m)(Ws)m,n − (Ws)m,n(En + (Gs)n,n) = (Vs)m,n.

Suppose for the moment that Gs lies in Y(∞, γ ) for every s ∈ N with

‖Gs‖∞,γ ≤ cH

6
. (36)

The norm ‖ · ‖∞,γ makes sense in this case since Gs is diagonal for every s ∈ N. The spec-
trum of En + (Gs)n,n is a subset of the interval

[
En − ‖Gs‖∞,γ

n2γ
,En + ‖Gs‖∞,γ

n2γ

]
.

Owing to (22) the distance between the spectrum of Em + (Gs)m,m and En + (Gs)n,n can be
estimated from below by

|Em − En| − ‖Gs‖∞,γ (m−2γ + n−2γ ) ≥ cH

|m − n|
max{m,n}2γ

− cH

6
(m−2γ + n−2γ )

≥ cH |m − n|
2 max{m,n}2γ

. (37)

The last inequality in (37) is a consequence of the following estimate where we assume for
definiteness that m > n (recall that 2γ < 1):

3(m − n)

m2γ
≥ m−2γ + m

n
m−2γ ≥ m−2γ + n−2γ .

Applying Lemma 15 we conclude that

‖(Ws)m,n‖ ≤ π max{m,n}2γ

cH |m − n| ‖(Vs)m,n‖. (38)

Set

M := cH

2πCr+1
, xs := ‖Vs‖r,iγ

M
. (39)

If Vs lies in the class Y(r, iγ ) then one derives from (38) that Ws ∈ Y(r + 1, (i − 1)γ ) and

‖Ws‖r+1,(i−1)γ ≤ π

cH

‖Vs‖r,iγ = xs

2Cr+1
. (40)

From Corollary 4 it follows that adk
Ws

Vs ∈ Y(r, iγ ) and

‖adk
Ws

Vs‖r,iγ ≤ (2Cr+1‖Ws‖r+1,(i−1)γ )k‖Vs‖r,iγ ≤ xk
s ‖Vs‖r,iγ . (41)

Since Vs+1 is defined as the off diagonal part of Hs+1 we get from (30) and (41) that

Vs+1 = offdiag(�(adWs )Vs),
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and so

‖Vs+1‖r,iγ ≤ �(xs)‖Vs‖r,iγ .

Hence the sequence {xs} defined in (39) fulfills inequalities (34).
Since ‖V1‖r,iγ ≤ ‖Z̄‖r,iγ assumption (23) implies x1 ≤ 1/2. We know from the discus-

sion at the end of Sect. 5.3 that in that case the series
∑

xs is convergent. It follows that
‖Vs‖r,iγ → 0 and, using the estimate

‖Ws‖ ≤ ‖Ws‖SH ≤ (1 + 2ζ(r + 1))‖Ws‖r+1,(i−1)γ

and (40), also that Us converges to a unitary operator U in B(H). Furthermore, from (30)
and (29) one deduces that

Gs+1 − Gs = diag(�(adWs )Vs).

Since Gs is diagonal and i ≥ 1 we have

‖Gs+1 − Gs‖∞,γ = ‖Gs+1 − Gs‖r,γ ≤ ‖Gs+1 − Gs‖r,iγ ≤ ‖�(adWs )Vs‖r,iγ .

Using once more (40) and (41) one finds that

‖Gs+1 − Gs‖ = ‖Gs+1 − Gs‖∞,0 ≤ ‖Gs+1 − Gs‖∞,γ ≤ M�(xs)xs . (42)

From here one concludes that {Gs} is a Cauchy sequence both in Y(∞, γ ) and B(H).
Hence Gs converges to a diagonal operator A which lies in Y(∞, γ ).

We must verify that condition (36) is actually fulfilled. Observe from (8) that Cp > 23 · 3
if p > 2. By the assumptions,

‖G1‖∞,γ ≤ ‖Y‖∞,γ + ‖Z̄‖r,iγ <
cH

12
.

Furthermore, from (42) it follows that

‖Gs+1‖∞,γ ≤ ‖G1‖∞,γ +
s∑

j=1

‖Gs+1 − Gs‖∞,γ ≤ cH

12
+ M

∞∑

j=1

xj�(xj ). (43)

Recalling that x1 ≤ 1/2 one gets

M

∞∑

j=1

xj�(xj ) ≤ Mx2
1

1 − x1
≤ Mx1 ≤ ‖Z̄‖r,iγ <

cH

12
. (44)

The last inequality is again a consequence of assumption (23). One concludes that condition
(36) is fulfilled for all s.

Since all operators occurring in (32) except of H are bounded one deduces from this
equality that Us preserves the domain of H for all s. Since H is a closed operator the limit
in equality (32), as s → ∞, can be carried out and results in equality (24).

From the computations in (43, 44) it also follows that

‖Gs+1‖∞,γ ≤ ‖G1‖∞,γ + Mx1 = ‖G1‖∞,γ + ‖V1‖r,iγ ≤ ‖Y‖∞,γ + 2‖Z̄‖r,iγ .
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Sending s to infinity one verifies the estimate (25). Furthermore, estimate (40) implies

∞∑

s=1

‖Ws‖r+1,(i−1)γ ≤ 1

2Cr+1

∞∑

s=1

xs ≤ x1

2Cr+1(1 − x1)
≤ 1

2Cr+1
.

From Corollary 4 we deduce that the operator adWs is well defined on the Banach space
Y(r − 1, (i + 1)γ ), with a norm bounded from above by 4Cr‖Ws‖r+1,(i−1)γ . Thus for X ∈
Y(r − 1, (i + 1)γ ) one can estimate

‖UXU ∗‖r−1,(i+1)γ = lim
s→∞‖eWs eWs−1 · · · eW1Xe−W1 · · · e−Ws−1e−Ws ‖r−1,(i+1)γ

≤ exp

(
4Cr

∞∑

s=1

‖Ws‖r+1,(i−1)γ

)
‖X‖r−1,(i+1)γ

≤ exp

(
2

Cr

Cr+1

)
‖X‖r−1,(i+1)γ .

This shows (26). The proof is complete. �

6 Proof of Theorem 8

As already announced, the proof of Theorem 8 is based on a combination of the anti-
adiabatic transform (Proposition 11) and the progressive diagonalization method (Corol-
lary 14). Let us formulate it as a corollary.

Corollary 16 Let r > 2, i ≥ 1, γ ∈]0, 1
2 [ , and H be a self-adjoint operator with a pure

point spectrum and the spectral decomposition H = ∑
n EnPn. Assume that the eigenvalues

{En}∞
n=1 are ordered increasingly and satisfy (1). Further assume that Y ∈ Y(∞, γ ) is Her-

mitian and commutes with H , and Z(t) ∈ Y(r, iγ ) is Hermitian, T -periodic and C1 in the
strong sense. If

‖Y‖∞,γ + ‖Z‖r,iγ ≤ cH

4πCr+1
,

then there exists a family U(t) of unitary operators on H which is T -periodic and C1 in the
strong sense and such that

U(t)(D + H + Y + Z(t))U(t)∗ = D + H + A + B(t),

where A ∈ Y(∞, γ ) is Hermitian, commutes with H and fulfills

‖A‖∞,γ ≤ 2(‖Y‖∞,γ + ‖Z‖r,iγ ),

and B(t) ∈ Y(r − 1, (i + 1)γ ) is T -periodic, Hermitian, continuously differentiable in the
strong sense and satisfies

‖B‖r−1,(i+1)γ ≤ 1

2Cr

exp

(
2

Cr

Cr+1

)

× (exp(4CrT ‖Z‖r,iγ ) − 1)(CH + 4‖Y‖∞,γ + 2Cr‖Z‖r,iγ ).
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To prove Corollary 16 it suffices to set U(t) = U exp(iF(t)) where F(t) comes from
Proposition 11 and U comes from Corollary 14. Apart of this one applies the following
elementary estimate: if the norm ‖X‖p,δ of a T -periodic family X(t) formed by bounded
operators is finite for some p > 1 and δ ≥ 0 then the time average X̄ of X(t) over the period
T fulfills ‖X̄‖p,δ ≤ ‖X‖p,δ .

Equipped with Corollary 16 we are ready to approach the proof of Theorem 8.

Proof of Theorem 8 One starts from the Floquet Hamiltonian K = D + H + V (t) and
applies to it q times Corollary 16, with the steps being enumerated by i = 1,2, . . . , q . In
the ith step one assumes that a strongly continuous function Ji−1(t) with values in unitary
operators on H has been already constructed so that

K = Ji−1(t)(D + H + Ai−1 + Bi−1(t))Ji−1(t)
∗,

with Ai−1 ∈ Y(∞, γ ) being Hermitian and commuting with H , and Bi−1(t) ∈
Y(p − i + 1, iγ ) being symmetric, T -periodic and C1 in the strong sense. In the first step
one sets A0 := 0, B0(t) := V (t) and J0(t) := 1.

Corollary 16 can be applied to the Floquet Hamiltonian Ki−1 := D+H +Ai−1 +Bi−1(t),
with r = p − i + 1, provided there is satisfied the assumption

‖Ai−1‖∞,γ + ‖Bi−1‖p−i+1,iγ ≤ cH

4πCp−i+2
. (45)

Recall that the constant Cp is given by (8). Under this assumption, there exists a strongly
differentiable family of unitary operators Ui (t) such that

Ki := D + H + Ai + Bi(t) = Ui (t)Ki−1Ui (t)
∗,

where Ai ∈ Y(∞, γ ) is symmetric and diagonal, and Bi(t) ∈ Y(p − i, (i + 1)γ ) is T -
periodic, symmetric and strongly C1. Moreover,

‖Ai‖∞,γ ≤ 2(‖Ai−1‖∞,γ + ‖Bi−1‖p−i+1,iγ ) (46)

and

‖Bi‖p−i,(i+1)γ ≤ 1

2Cp−i+1
exp

(
2
Cp−i+1

Cp−i+2

)
(exp(4Cp−i+1T ‖Bi−1‖p−i+1,iγ ) − 1)

× (CH + 4‖Ai−1‖∞,γ + 2Cp−i+1‖Bi−1‖p−i+1,iγ ). (47)

Finally, Ji(t) := Ji−1(t)Ui (t)
∗ is a family of unitary operators which is continuously differ-

entiable in the strong sense and such that

K = Ji(t)(D + H + Ai + Bi(t))Ji(t)
∗.

To finish the proof we have to choose ε > 0 sufficiently small so that if ‖V ‖p,γ < ε then
condition (45) is satisfied in each step i = 1,2, . . . , q .

From (46) one derives by induction

‖Ai‖∞,γ ≤
i−1∑

j=0

2i−j‖Bj‖p−j,(j+1)γ .
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From here we deduce that inequalities (45) are satisfied for i = 1,2, . . . , k, provided the
inequalities

i−1∑

j=0

2i−1−j‖Bj‖p−j,(j+1)γ ≤ cH

4πCp−i+2
(48)

are satisfied for the same range of indices. Furthermore, relations (45) and (47) imply that

‖Bi‖p−i,(i+1)γ ≤ φi(‖Bi−1‖p−i+1,iγ ), (49)

where

φi(y) :=
exp

(
2

Cp−i+1
Cp−i+2

)

2Cp−i+1
(exp(4Cp−i+1Ty) − 1)

×
(

CH + cH

πCp−i+2
+ (2Cp−i+1 − 4)y

)
.

Set

Fi(y) := 2i−1y +
i−1∑

j=1

2i−1−jφj ◦ φj−1 ◦ · · · ◦ φ1(y), i = 1,2, . . . , q.

It follows from (49) that inequalities (48) are satisfied for i = 1,2, . . . , k, if it holds

Fi(‖B0‖p,γ ) ≤ cH

4πCp−i+2

for the same range of indices.
Recall that B0(t) = V (t). From this discussion it is clear that condition (45) is satisfied

in all steps i = 1,2, . . . , q , provided ‖V ‖p,γ ≤ ε and ε > 0 is chosen so that

∀i ∈ {1,2, . . . , q}, ∀y ∈ [0, ε], Fi(y) ≤ cH

4πCp−i+2
.

But all functions φi(y) are continuous, strictly increasing and satisfy φi(0) = 0. Conse-
quently, the same is true for all functions Fi(y). Hence the following choice of ε will do:

ε = min

{
F−1

i

(
cH

4πCp−i+2

)
; 1 ≤ i ≤ q

}
.

This completes the proof of Theorem 8. �
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